Targeting phosphoglycerate dehydrogenase in multiple myeloma

针对多发性骨髓瘤中的磷酸甘油酸脱氢酶

阅读:6
作者:Samah Elsaadi, Ida Steiro, Pegah Abdollahi, Esten N Vandsemb, Rui Yang, Tobias S Slørdahl, Torstein Baade Rø, Eline Menu, Anne-Marit Sponaas, Magne Børset

Background

Multiple myeloma (MM) is a hematological malignancy characterized by the clonal expansion of plasma cells in the bone marrow. To date, this disease is still incurable and novel therapeutic approaches are required. Phosphoglycerate dehydrogenase (PHGDH) is the first and rate-limiting enzyme in the de novo serine synthesis pathway, and it has been attributed to bortezomib-resistance in MM.

Conclusions

Our study shows the therapeutic potential of targeting PHGDH in MM, and suggest it as a way to overcome the resistance to proteasome inhibitors.

Methods

Two different PHGDH inhibitors, CBR5884 and NCT-503, were tested against human myeloma cell lines, primary MM cells from patients, and peripheral blood mononuclear cells isolated from healthy donors. The PHGDH inhibitors were then tested in combination with proteasome inhibitors in different MM cell lines, including proteasome-resistant cell lines. Furthermore, we confirmed the effects of PHGDH inhibition through knocking down PHGDH and the effect of NCT-503 in vivo in the 5T33MM mouse model.

Results

All the tested myeloma cell lines expressed PHGDH and were sensitive to doses of NCT-503 that were tolerated by peripheral blood mononuclear cells isolated from healthy donors. Upon testing bortezomib in combination with NCT-503, we noticed a clear synergy in several HMCLs. The sensitivity to bortezomib also increased after PHGDH knockdown, mimicking the effect of NCT-503 treatment. Interestingly, targeting PHGDH reduced the intracellular redox capacity of the cells. Furthermore, combination treatment with NCT-503 and bortezomib exhibited a therapeutic advantage in vivo. Conclusions: Our study shows the therapeutic potential of targeting PHGDH in MM, and suggest it as a way to overcome the resistance to proteasome inhibitors.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。