MicroRNA-494 regulates high glucose-induced cardiomyocyte apoptosis and autophagy by PI3K/AKT/mTOR signalling pathway

MicroRNA-494通过PI3K/AKT/mTOR信号通路调控高糖诱导的心肌细胞凋亡与自噬

阅读:7
作者:Shuwei Ning, Siqi Zhang, Zhikun Guo

Aims

Diabetic cardiomyopathy (DCM) is one of the major cardiovascular complications of diabetes. However, the mechanism of DCM is not fully understood. Studies have confirmed that certain microRNAs (miRNAs/miRs) are key regulators of DCM. The aim of this study was to investigate the role and mechanism of microRNA (miR)-494 in cardiomyocyte apoptosis and autophagy induced by high glucose (HG).

Conclusions

These findings identify that miR-494 could regulate cell apoptosis and autophagy through PI3K/AKT/mTOR signalling pathway, participating in the regulation of cardiomyocyte cell damage after HG. These findings provide new insights for the further study of the molecular mechanism and treatment of DCM.

Results

By establishing a rat DCM model and an HG-treated H9c2 cells injury model, cardiac function was detected by echocardiography, myocardial tissue was stained by immunohistochemistry, and Cell Counting Kit-8 assay and lactate dehydrogenase assay were used to detect the cardiomyocyte injury. Cell apoptosis was detected by terminal deoxynucleotidyl transferase dUTP nick end labelling staining, and western blotting was used to detect death and autophagy. The results showed that the expression level of miR-494 was higher in the myocardial tissue of DCM rats and the myocardial cells of H9c2 treated with HG. Compared with the corresponding negative control groups, miR-494 mimics enhanced HG-induced apoptosis and autophagy, whereas miR-494 inhibitors showed the opposite effect, corresponding PI3K, AKT, and mTOR phosphorylation level has changed. Conclusions: These findings identify that miR-494 could regulate cell apoptosis and autophagy through PI3K/AKT/mTOR signalling pathway, participating in the regulation of cardiomyocyte cell damage after HG. These findings provide new insights for the further study of the molecular mechanism and treatment of DCM.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。