T Lymphocytes Attenuate Dermal Scarring by Regulating Inflammation, Neovascularization, and Extracellular Matrix Remodeling

淋巴细胞通过调节炎症、新生血管形成和细胞外基质重塑来减轻真皮瘢痕

阅读:7
作者:Xinyi Wang, Swathi Balaji, Emily H Steen, Hui Li, Meredith M Rae, Alexander J Blum, Qi Miao, Manish J Butte, Paul L Bollyky, Sundeep G Keswani

Conclusion

Our data support a suppressive role for CD4+ T cells against inflammation and collagen deposition, with protective effects in early-stage dermal wound healing. These data implicate adaptive immunity in the regulation of scarring phenotypes.

Objective

While tissue injury and repair are known to involve adaptive immunity, the profile of lymphocytes involved and their contribution to dermal scarring remain unclear. We hypothesized that restoration of T cell deficiency attenuates dermal scarring. Approach: We assessed the temporal-spatial distribution of T lymphocytes and their subtypes during the physiological dermal wound repair process in mice. Also, we compared the scarring outcomes between wild-type (WT) and severe combined immunodeficient (SCID) mice, which are lymphocyte deficient. Complementary gain-of-function experiments were performed by adoptively transferring lymphocyte subsets to validate their contribution to tissue repair in wounded SCID mice.

Results

CD4+ T lymphocytes were present within dermal wounds of WT mice beginning on day 1 and remained through day 30. Wounds of SCID mice exhibited accelerated closure, increased inflammation, limited neovascularization, and exacerbated scarring compared with WT mice. Conversely, transfer of either mixed B and T lymphocytes or CD4+ lymphocytes alone into SCID mice resulted in moderated healing with less inflammation, collagen deposition, and scarring than control SCID wounds. In contrast, transfer of other lymphocyte subsets, including helper T lymphocytes (CD3+CD4+CD25-), CD8+ T cells and B cells, or regulatory T lymphocytes (CD4+CD25+CD127low), did not reduce scar. Innovation: The finding that lymphocytes delay wound healing but reduce scar is novel and provides new insights into how dermal scarring is regulated.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。