Oxidation Products of 5-Methylcytosine are Decreased in Senescent Cells and Tissues of Progeroid Mice

早衰小鼠衰老细胞和组织中 5-甲基胞嘧啶的氧化产物减少

阅读:8
作者:Ewelina Zarakowska, Jolanta Czerwinska, Agnieszka Tupalska, Matt J Yousefzadeh, Siobhán Q Gregg, Claudette M St Croix, Laura J Niedernhofer, Marek Foksinski, Daniel Gackowski, Anna Szpila, Marta Starczak, Barbara Tudek, Ryszard Olinski

Abstract

5-Hydroxymethylcytosine and 5-formylcytosine are stable DNA base modifications generated from 5-methylcytosine by the ten-eleven translocation protein family that function as epigenetic markers. 5-Hydroxymethyluracil may also be generated from thymine by ten-eleven translocation enzymes. Here, we asked if these epigenetic changes accumulate in senescent cells, since they are thought to be inversely correlated with proliferation. Testing this in ERCC1-XPF-deficient cells and mice also enabled discovery if these DNA base changes are repaired by nucleotide excision repair. Epigenetic marks were measured in proliferating, quiescent and senescent wild-type (WT) and Ercc1-/- primary mouse embryonic fibroblasts. The pattern of epigenetic marks depended more on the proliferation status of the cells than their DNA repair capacity. The cytosine modifications were all decreased in senescent cells compared to quiescent or proliferating cells, whereas 5-(hydroxymethyl)-2'-deoxyuridine was increased. In vivo, both 5-(hydroxymethyl)-2'-deoxyuridine and 5-(hydroxymethyl)-2'-deoxycytidine were significantly increased in liver tissues of aged WT mice compared to young adult WT mice. Livers of Ercc1-deficient mice with premature senescence and aging had reduced level of 5-(hydroxymethyl)-2'-deoxycytidine and 5-formyl-2'-deoxycytidine compared to aged-matched WT controls. Taken together, we demonstrate for the first time, that 5-(hydroxymethyl)-2'-deoxycytidine is significantly reduced in senescent cells and tissue, potentially yielding a novel marker of senescence.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。