EFFECTS OF TRAUMA PLASMA-DERIVED EXOSOMES ON HEMATOPOIETIC PROGENITOR CELLS

创伤血浆来源的外泌体对造血祖细胞的影响

阅读:5
作者:Jennifer A Munley, Lauren S Kelly, Gwendolyn S Gillies, Kolenkode B Kannan, Erick E Pons, Letitia E Bible, Philip A Efron, Alicia M Mohr

Background

Severe trauma disrupts bone marrow function resulting in persistent anemia and immunosuppression. Exosomes are extracellular vesicles implicated in disease, cellular functions, and immunomodulation. The effects of trauma plasma-derived exosomes on bone marrow hematopoiesis are unstudied; we hypothesized that trauma plasma-derived exosomes suppress bone marrow hematopoietic progenitor cell (HPC) growth and contribute to increased inflammatory cytokines and HPC mobilization.

Conclusions

Both plasma and plasma-derived exosomes from trauma patients adversely affect bone marrow function. Plasma-derived exosomes may contribute to altered hematopoiesis after severe trauma; analysis of exosomal content may improve our understanding of altered bone marrow function.

Methods

Plasma was collected from a prospective, cohort study of trauma patients (n = 15) with hip and/or femur fractures and an ISS > 15 and elective total hip arthroplasty (THA) patients (n = 15). Exosomes were isolated from both groups using the Invitrogen Total Exosome Isolation Kit. Healthy bone marrow was cultured with 2% plasma, 50 μg, 100 μg, or 200 μg of exosomal protein and HPC (granulocyte, erythrocyte, monocyte, megakaryocyte colony-forming units [CFU-GEMM], erythroid burst-forming units [BFU-E], and macrophage colony-forming units [CFU-GM]) growth assessed. After culturing healthy bone marrow stroma with 100 μg of exosomal protein, expression of cytokines and factors influencing HPC mobilization were assessed by qPCR. Differences were compared using the ANOVA, with significance defined as P < 0.05.

Results

The only demographic difference was age; trauma patients were significantly younger than THA (mean 44 vs. 63 years). In vitro exposure to trauma plasma significantly decreased growth of all HPCs. In vitro exposure to 100 μg or 200 μg of trauma exosomal protein significantly decreased growth of BFU-E and CFU-GM, whereas 50 μg had no effect. Culture of trauma exosomal protein with bone marrow stromal cells resulted in increased expression of IFN-γ, IL-1α, TNF-α, G-CSF, CXCR4, SDF-1, and VCAM-1 in bone marrow stroma. Conclusions: Both plasma and plasma-derived exosomes from trauma patients adversely affect bone marrow function. Plasma-derived exosomes may contribute to altered hematopoiesis after severe trauma; analysis of exosomal content may improve our understanding of altered bone marrow function.

Trial registration

ClinicalTrials.gov NCT02577731.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。