U2AF2-SNORA68 promotes triple-negative breast cancer stemness through the translocation of RPL23 from nucleoplasm to nucleolus and c-Myc expression

U2AF2-SNORA68 通过将 RPL23 从核质易位到核仁和 c-Myc 表达来促进三阴性乳腺癌干性

阅读:5
作者:Wenrong Zhang #, Xinyue Song #, Zining Jin #, Yiqi Zhang, Shan Li, Feng Jin, Ang Zheng

Background

Small nucleolar RNAs (snoRNAs) play key roles in ribosome biosynthesis. However, the mechanism by which snoRNAs regulate cancer stemness remains to be fully elucidated.

Conclusion

U2AF2-SNORA68 promotes TNBC stemness by retaining RPL23 in the nucleolus and increasing c-Myc expression, which provides new insight into the regulatory mechanism of stemness.

Methods

SNORA68 expression was evaluated in breast cancer tissues by in situ hybridization and qRT‒PCR. Proliferation, migration, apoptosis and stemness analyses were used to determine the role of SNORA68 in carcinogenesis and stemness maintenance. Mechanistically, RNA pull-down, RNA immunoprecipitation (RIP), cell fractionation and coimmunoprecipitation assays were conducted.

Results

SNORA68 exhibited high expression in triple-negative breast cancer (TNBC) and was significantly correlated with tumor size (P = 0.048), ki-67 level (P = 0.037), and TNM stage (P = 0.015). The plasma SNORA68 concentration was significantly lower in patients who achieved clinical benefit. The SNORA68-high patients had significantly shorter disease-free survival (DFS) (P = 0.036). Functionally, SNORA68 was found to promote the cell stemness and carcinogenesis of TNBC in vitro and in vivo. Furthermore, elevated SNORA68 expression led to increased nucleolar RPL23 expression and retained RPL23 in the nucleolus by binding U2AF2. RPL23 in the nucleolus subsequently upregulated c-Myc expression. This pathway was validated using a xenograft model.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。