Background
In the backdrop of challenge to obtain a protein structure under the known limitations of both experimental and theoretical techniques, the need of a fast as well as accurate protein structure evaluation method still exists to substantially reduce a huge gap between number of known sequences and structures. Among currently practiced theoretical techniques, homology modelling backed by molecular dynamics based optimization appears to be the most popular one. However it suffers from contradictory indications of different validation parameters generated from a set of protein models which are predicted against a particular target protein. For example, in one model Ramachandran Score may be quite high making it acceptable, whereas, its potential energy may not be very low making it unacceptable and vice versa. Towards resolving this problem, the main
Conclusion
In this work, a semi-empirical methodological approach was provided for improving protein structure evaluation. It showed that, once structure models of a protein were obtained through homology technique, the problem of selection of a best model out of a confusion set of Pareto-optimal structures could be resolved by employing a structure agent directly obtainable through experiment with the same protein as experimental ingredient. Overall, in the backdrop of getting a reasonably accurate protein structure of pathogens causing epidemics or biological warfare, such approach could be of use as a plausible solution for fast drug design.