Fluoxetine inhibited the activation of A1 reactive astrocyte in a mouse model of major depressive disorder through astrocytic 5-HT2BR/β-arrestin2 pathway

氟西汀通过星形胶质细胞 5-HT2BR/β-arrestin2 通路抑制重度抑郁症小鼠模型中 A1 反应性星形胶质细胞的激活

阅读:9
作者:Yinquan Fang #, Xiao Ding #, Yihe Zhang, Lei Cai, Yuan Ge, Kaiyang Ma, Rong Xu, Shanshan Li, Mengmeng Song, Hong Zhu, Jiaqi Liu, Jianhua Ding, Ming Lu, Gang Hu

Background

Fluoxetine, a selective serotonin reuptake inhibitor, has been reported to directly bind with 5-HT2B receptor (5-HT2BR), but the precise mechanisms, whereby fluoxetine confers the anti-depressive actions via 5-HT2BR is not fully understood. Although neuroinflammation-induced A1 astrocytes are involved in neurodegenerative diseases, the role of A1 astrocyte in the pathogenesis and treatment of major depressive disorder (MDD) remains unclear.

Conclusions

These data demonstrate that fluoxetine restricts reactive A1 astrocyte via astrocytic 5-HT2BR/β-arrestin2 pathway in a mouse model of MDD and provide a novel therapeutic avenue for MDD.

Methods

Mice were subjected to chronic mild stress (CMS) for 6 weeks and subsequently treated with fluoxetine for 4 weeks. The depressive-like and anxiety-like behaviors and the activation of A1 reactive astrocyte in hippocampus and cortex of mice were measured. Primary astrocytes were stimulated with A1 cocktail (tumor necrosis factor (TNF)-α, interleukin (IL)-1α and C1q), activated (LPS) microglia-conditioned medium (MCM) or IL-6 for 24 h and the expression of A1-special and A2-special markers were determined using RT-qPCR and western blot. The role of 5-HT2BR in the effects of fluoxetine on A1 reactive astrocyte was measured using 5-HT2BR inhibitor and siRNA in vitro and AAVs in vivo. The functions of downstream signaling Gq protein and β-arrestins in the effects of fluoxetine on the activation of A1 astrocyte were determined using pharmacological inhibitor and genetic knockout, respectively.

Results

In this study, we found that fluoxetine inhibited the activation of A1 reactive astrocyte and reduced the abnormal behaviors in CMS mice, as well as ameliorated A1 astrocyte reactivity under three different stimulators in primary astrocytes. We also showed that astrocytic 5-HT2BR was required in the inhibitory effects of fluoxetine on A1 reactive astrocyte in MDD in vivo and in vitro. We further found that the functions of fluoxetine in the activation of A1 astrocyte were independent of either Gq protein or β-arrestin1 in vitro. β-arrestin2 pathway was the downstream signaling of astrocytic 5-HT2BR mediated the inhibitory effects of fluoxetine on A1 astrocyte reactivity in primary astrocytes and CMS mice, as well as the improved roles of fluoxetine in behavioral impairments of CMS mice. Conclusions: These data demonstrate that fluoxetine restricts reactive A1 astrocyte via astrocytic 5-HT2BR/β-arrestin2 pathway in a mouse model of MDD and provide a novel therapeutic avenue for MDD.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。