Macrophage metabolic reprogramming aggravates aortic dissection through the HIF1α-ADAM17 pathway✰

巨噬细胞代谢重编程通过 HIF1α-ADAM17 通路加剧主动脉夹层

阅读:7
作者:Guan Lian, Xiaopeng Li, Linqi Zhang, Yangming Zhang, Lulu Sun, Xiujuan Zhang, Huiying Liu, Yanli Pang, Wei Kong, Tao Zhang, Xian Wang, Changtao Jiang

Background

Aortic dissection is a severe inflammatory vascular disease with high mortality and limited therapeutic options. The hallmarks of aortic dissection comprise aortic inflammatory cell infiltration and elastic fiber disruption, highlighting the involvement of macrophage. Here a role for macrophage hypoxia-inducible factor 1-alpha (HIF-1α) in aortic dissection was uncovered.

Methods

Immunochemistry, immunofluorescence, western blot and qPCR were performed to test the change of macrophage HIF-1α in two kinds of aortic dissection models and human tissues. Metabolomics and Seahorse extracellular flux analysis were used to detect the metabolic state of macrophages involved in the development of aortic dissection. Chromatin Immunoprecipitation (ChIP), enzyme-linked immunosorbent assay (ELISA) and cytometric bead array (CBA) were employed for mechanistic studies. Findings: Macrophages involved underwent distinct metabolic reprogramming, especially fumarate accumulation, thus inducing HIF-1α activation in the development of aortic dissection in human and mouse models. Mechanistic studies revealed that macrophage HIF-1α activation triggered vascular inflammation, extracellular matrix degradation and elastic plate breakage through increased a disintegrin and metallopeptidase domain 17 (ADAM17), identified as a novel target gene of HIF-1α. A HIF-1α specific inhibitor acriflavine elicited protective effects on aortic dissection dependent on macrophage HIF-1α. Interpretation: This study reveals that macrophage metabolic reprogramming activates HIF-1α and subsequently promotes aortic dissection progression, suggesting that macrophage HIF-1α inhibition might be a potential therapeutic target for treating aortic dissection.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。