Circadian rhythm modulates endochondral bone formation via MTR1/AMPKβ1/BMAL1 signaling axis

昼夜节律通过 MTR1/AMPKβ1/BMAL1 信号轴调节软骨内骨形成

阅读:6
作者:Shaoling Yu #, Qingming Tang #, Guangjin Chen, Xiaofeng Lu, Ying Yin, Mengru Xie, Yanlin Long, Wenhao Zheng, Fengyuan Guo, Longquan Shao, Anbing Shi, Lili Chen

Abstract

The circadian clock is a master regulator in coordinating daily oscillations of physiology and behaviors. Nevertheless, how the circadian rhythm affects endochondral ossification is poorly understood. Here we showed that endochondral bone formation exhibits circadian rhythms, manifested as fast DNA replication in the daytime, active cell mitosis, and matrix synthesis at night. Circadian rhythm disruption led to endochondral ossification deformities. The mechanistic dissection revealed that melatonin receptor 1 (MTR1) periodically activates the AMPKβ1 phosphorylation, which then orchestrates the rhythms of cell proliferation and matrix synthesis via destabilizing the clock component CRY1 and triggering BMAL1 expression. Accordingly, the AMPKβ1 agonist is capable of alleviating the abnormity of endochondral ossification caused by circadian dysrhythmias. Taken together, these findings indicated that the central circadian clock could control endochondral bone formation via the MTR1/AMPKβ1/BMAL1 signaling axis in chondrocytes. Also, our results suggested that the AMPKβ1 signaling activators are promising medications toward endochondral ossification deformities.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。