Alleviating iatrogenic effects of paclitaxel via anti-inflammatory treatment

通过抗炎治疗减轻紫杉醇的医源性影响

阅读:8
作者:Mengwei Zhang, Saran Lotfollahzadeh, Nagla Elzinad, Xiaosheng Yang, Murad Elsadawi, Adam Gower, Mostafa Belghasem, Tarek Shazly, Vijaya B Kolachalama, Vipul Chitalia

Background

Paclitaxel is touted as an essential medicine due to its extensive use as a chemotherapeutic for various cancers and an antiproliferative agent for restenosis. Due to recent concerns related to long-term mortality, paclitaxel (PTX)-based endovascular therapy is now surrounded by controversies.

Conclusions

Our study shows that systemic PTX exposure upregulates atherothrombotic markers, and co-delivery of DEX can subdue the untoward toxic effects. Long-term studies are needed to probe the mechanisms driving systemic complications of PTX-based therapies and evaluate the clinical potential of DEX to mitigate risk.

Methods

RNAseq analysis, cell and mouse models.

Objective

Examine the inflammatory mediators driven by the systemic administration of PTX and explore the means to suppress these effects.

Results

RNAseq analysis of primary human endothelial cells (ECs) treated with PTX demonstrated transcriptional perturbations of a set of pro-inflammatory mediators, including monocyte chemoattractant protein-1 (MCP-1) and CD137, which were validated in EC lysates. These perturbations were abrogated with dexamethasone, a prototypic anti-inflammatory compound. The media of ECs pre-treated with PTX showed a significant increase in MCP-1 levels, which were reverted to baseline levels with DEX treatment. A group of mice harvested at different time points after PTX injection were analyzed for immediate and delayed effects of PTX. A 3-fold increase in MCP-1 was noted in blood and aortic ECs after 12 hours of PTX treatment. Similar changes in CD137 and downstream mediators such as tissue factor, VCAM-1 and E-selectin were noted in aortic ECs. Conclusions: Our study shows that systemic PTX exposure upregulates atherothrombotic markers, and co-delivery of DEX can subdue the untoward toxic effects. Long-term studies are needed to probe the mechanisms driving systemic complications of PTX-based therapies and evaluate the clinical potential of DEX to mitigate risk.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。