Development of Stabilizing Formulations of a Trivalent Inactivated Poliovirus Vaccine in a Dried State for Delivery in the Nanopatch™ Microprojection Array

开发干燥状态下三价灭活脊髓灰质炎病毒疫苗的稳定配方,用于 Nanopatch™ 微投影阵列输送

阅读:6
作者:Ying Wan, John M Hickey, Christopher Bird, Katey Witham, Paul Fahey, Angus Forster, Sangeeta B Joshi, David B Volkin

Abstract

The worldwide switch to inactivated polio vaccines (IPVs) is a key component of the overall strategy to achieve and maintain global polio eradication. To this end, new IPV vaccine delivery systems may enhance patient convenience and compliance. In this work, we examine Nanopatch™ (a solid, polymer microprojection array) which offers potential advantages over standard needle/syringe administration including intradermal delivery and reduced antigen doses. Using trivalent IPV (tIPV) and a purpose-built evaporative dry-down system, candidate tIPV formulations were developed to stabilize tIPV during the drying process and on storage. Identifying conditions to minimize tIPV potency losses during rehydration and potency testing was a critical first step. Various classes and types of pharmaceutical excipients (∼50 total) were then evaluated to mitigate potency losses (measured through D-antigen ELISAs for IPV1, IPV2, and IPV3) during drying and storage. Various concentrations and combinations of stabilizing additives were optimized in terms of tIPV potency retention, and 2 candidate tIPV formulations containing cyclodextrin and a reducing agent (e.g., glutathione), maintained ≥80% D-antigen potency during drying and subsequent storage for 4 weeks at 4°C, and ≥60% potency for 3 weeks at room temperature with the majority of losses occurring within the first day of storage.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。