Microglial activation contributes to cognitive impairments in rotenone-induced mouse Parkinson's disease model

小胶质细胞活化导致鱼藤酮诱发的小鼠帕金森病模型出现认知障碍

阅读:9
作者:Dongdong Zhang, Sheng Li, Liyan Hou, Lu Jing, Zhengzheng Ruan, Bingjie Peng, Xiaomeng Zhang, Jau-Shyong Hong, Jie Zhao, Qingshan Wang

Background

Cognitive decline occurs frequently in Parkinson's disease (PD), which greatly decreases the quality of life of patients. However, the mechanisms remain to be investigated. Neuroinflammation mediated by overactivated microglia is a common pathological feature in multiple neurological disorders, including PD. This study is designed to explore the role of microglia in cognitive deficits by using a rotenone-induced mouse PD model.

Conclusions

Taken together, our findings suggested that microglial activation contributes to cognitive impairments in a rotenone-induced mouse PD model via neuroinflammation, oxidative stress, and apoptosis, providing novel insight into the immunopathogensis of cognitive deficits in PD.

Methods

To evaluate the role of microglia in rotenone-induced cognitive deficits, PLX3397, an inhibitor of colony-stimulating factor 1 receptor, and minocycline, a widely used antibiotic, were used to deplete or inactivate microglia, respectively. Cognitive performance of mice among groups was detected by Morris water maze, objective recognition, and passive avoidance tests. Neurodegeneration, synaptic loss, α-synuclein phosphorylation, glial activation, and apoptosis were determined by immunohistochemistry and Western blot or immunofluorescence staining. The gene expression of inflammatory factors and lipid peroxidation were further explored by using RT-PCR and ELISA kits, respectively.

Results

Rotenone dose-dependently induced cognitive deficits in mice by showing decreased performance of rotenone-treated mice in the novel objective recognition, passive avoidance, and Morris water maze compared with that of vehicle controls. Rotenone-induced cognitive decline was associated with neurodegeneration, synaptic loss, and Ser129-phosphorylation of α-synuclein and microglial activation in the hippocampal and cortical regions of mice. A time course experiment revealed that rotenone-induced microglial activation preceded neurodegeneration. Interestingly, microglial depletion by PLX3397 or inactivation by minocycline significantly reduced neuronal damage and α-synuclein pathology as well as improved cognitive performance in rotenone-injected mice. Mechanistically, PLX3397 and minocycline attenuated rotenone-induced astroglial activation and production of cytotoxic factors in mice. Reduced lipid peroxidation was also observed in mice treated with combined PLX3397 or minocycline and rotenonee compared with rotenone alone group. Finally, microglial depletion or inactivation was found to mitigate rotenone-induced neuronal apoptosis. Conclusions: Taken together, our findings suggested that microglial activation contributes to cognitive impairments in a rotenone-induced mouse PD model via neuroinflammation, oxidative stress, and apoptosis, providing novel insight into the immunopathogensis of cognitive deficits in PD.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。