In vitro study of FUZ as a novel potential therapeutic target in non-small-cell lung cancer

FUZ 作为非小细胞肺癌新的潜在治疗靶点的体外研究

阅读:4
作者:Minwei He, Kangqi Li, Chuanfei Yu, Bingfeng Lv, Ning Zhao, Jinhai Deng, Lulu Cao, He Huang, Ang Yin, Taiping Shi, Lu Wang

Abstract

FUZ is regarded as a planar cell polarity effector that controls multiple cellular processes during vertebrate development. However, the role of FUZ in tumor biology remains poorly studied. Our purpose of this study is to discover the physiological effects and mechanism of FUZ in non-small-cell lung cancer (NSCLC) in vitro. With the help of bioinformatics analysis, we noticed that the expression level of FUZ negatively correlates with prognosis of NSCLC patients. Exogenous FUZ expression markedly promoted cell proliferation of NSCLC cells. The phosphorylation of Erk1/2, STAT3 and related signaling molecules were induced activated after FUZ over-expression. FUZ also plays an important role in cell motility by regulating cell signaling pathways and inducing epithelial to mesenchymal transition (EMT). FUZ promotes EMT along with the up-regulation of N-cadherin, vimentin, Zeb1, Twist1 and decreased level of E-cadherin. Furthermore, we also carried out FUZ directed siRNA treatments to prove the above observations. Knockdown of FUZ resulted in delayed cell growth as well as impaired cell migration and reversed EMT phonotype. Importantly, we reported for the first time that FUZ is a BNIP3-interacting protein. Loss of FUZ resulted in decreased BNIP3 protein level, but no influence on BNIP3 mRNA level, suggesting weakened stability of BNIP3 protein. Overall, our results in vitro show that FUZ is responsible for NSCLC progression and metastasis, suggesting that FUZ can be a potential therapeutic target for NSCLC.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。