Inhibition of tumor-promoting stroma to enforce subsequently targeting AT1R on tumor cells by pathological inspired micelles

抑制促肿瘤基质,随后通过病理启发胶束靶向肿瘤细胞上的 AT1R

阅读:7
作者:Yun Zhu, Lijuan Wen, Shihong Shao, Yanan Tan, Tingting Meng, Xiqin Yang, Yupeng Liu, Xuan Liu, Hong Yuan, Fuqiang Hu

Abstract

Cancer associated fibroblasts (CAFs) are the most abundant, genetically stable stroma cells and localize near blood vessels within "finger-like" collagen-rich stroma, which lead to restrained drug transport in dense stroma instead of tumor cells inside tumor mass, especially for targeting micelles. Meanwhile, the bioactive cytokines secreted by stroma cells result in microenvironment mediated drug resistance (TMDR). Hence, a biologically inspired Telmisartan (Tel) grafting glycolipid micelles (Tel-CSOSA) are constructed, which can sequentially target angiotensin II type I receptor (AT1R) overexpressed on both CAFs and tumor cells. More Tel-CSOSA are demonstrated to specifically accumulate in tumor site compared to CSOSA. In addition, the retention of Tel-CSOSA is primarily prolonged around tumor vessel in virtue of CAFs targeting and the stroma barrier. In contrast, the elimination of "finger-like" ECM resulting from CAFs apoptosis by Tel-CSOSA/DOX contributes to a more uniform and deeper penetration post-administration, which can enforce subsequently tumor cells targeting. Meanwhile, cytokines are decreased along with CAFs apoptosis so that tumor cells are more vulnerable to chemotherapeutics. Collectively, this strategy of sequentially targeting CAFs and tumor cells could synergistically increase antitumor therapy with reversed TMDR.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。