Mechanisms of tau and Aβ-induced excitotoxicity

tau 和 Aβ 诱导的兴奋毒性机制

阅读:8
作者:Susanne P Pallo, John DiMaio, Alexis Cook, Bradley Nilsson, Gail V W Johnson

Abstract

Excitotoxicity was originally postulated to be a late stage side effect of Alzheimer׳s disease (AD)-related neurodegeneration, however more recent studies indicate that it may occur early in AD and contribute to the neurodegenerative process. Tau and amyloid beta (Aβ), the main components of neurofibrillary tangles (NFTs) and amyloid plaques, have been implicated in cooperatively and independently facilitating excitotoxicity. Our study investigated the roles of tau and Aβ in AD-related excitotoxicity. In vivo studies showed that tau knockout (tau(-/-)) mice were significantly protected from seizures and hippocampal superoxide production induced with the glutamate analog, kainic acid (KA). We hypothesized that tau accomplished this by facilitating KA-induced Ca(2+) influx into neurons, however lentiviral tau knockdown failed to ameliorate KA-induced Ca(2+) influx into primary rat cortical neurons. We further investigated if tau cooperated with Aβ to facilitate KA-induced Ca(2+) influx. While Aβ biphasically modulated the KA-induced Cacyt(2+) responses, tau knockdown continued to have no effect. Therefore, tau facilitates KA-induced seizures and superoxide production in a manner that does not involve facilitation of Ca(2+) influx through KA receptors (KAR). On the other hand, acute pretreatment with Aβ (10 min) enhanced KA-induced Ca(2+) influx, while chronic Aβ (24 h) significantly reduced it, regardless of tau knockdown. Given previously published connections between Aβ, group 1 metabotropic glutamate receptors (mGluRs), and KAR regulation, we hypothesized that Aβ modulates KAR via a G-protein coupled receptor pathway mediated by group 1 mGluRs. We found that Aβ did not activate group 1 mGluRs and inhibition of these receptors did not reverse Aβ modulation of KA-induced Ca(2+) influx. Therefore, Aβ biphasically regulates KAR via a mechanism that does not involve group 1mGluR activation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。