MicroRNA-744/transforming growth factor β1 relationship regulates liver cirrhosis

MicroRNA-744/转化生长因子β1关系调控肝硬化

阅读:8
作者:Shuang Ren, Jiamei Chen, Qinglan Wang, Xuewei Li, Ying Xu, Xiao Zhang, Yongping Mu, Hua Zhang, Shuang Huang, Ping Liu

Background

MicroRNAs have added a new dimension to our understanding of liver cirrhosis (LC) and associated processes like the activation of hepatic stellate cells (HSCs).

Conclusions

MiR-744-led suppression in HSC activation is most likely through TGFβ1 because exogenous TGFβ1 nearly negated miR-744 Agomir's action. This study suggests that reduction of miR-744 is a reliable biomarker for LC and miR-744/TGFβ1 relationship is a key regulator of LC.

Methods

Serum samples were collected from 40 LC patients and 30 healthy donors. CCl4-induced LC mouse model in vivo and in vitro human HSC LX-2 and murine HSC JS-1 cells were researched.

Results

The levels of serum microRNA (miR)-744 is inversely correlated with the severity of LC and is a reliable biomarker of LC. In CCl4-induced LC model, the abundance of miR-744 was reduced in both sera and livers compared with sham controls. Importantly, increasing miR-744 abundance with synthetic miR-744 Agomir alleviated liver fibrosis, a critical component of LC, while reducing miR-744 with Antagomir exacerbated it. To elucidate molecular mechanism underlying the suppressive role of miR-744 in LC, we observed that miR-744 and transforming growth factor β1 (TGFβ1) are inversely correlated in LC patients' sera as well as sera/livers from CCl4-induced LC mice. We demonstrated that miR-744 Agomir downregulated the expression of TGFβ1 and further confirmed that TGFβ1 mRNA was a bona fide miR-744 target in HSCs. Moreover, miR-744 Agomir reduced the degree of F-actin formation and cell proliferation while miR-744 Antagomir promoted these events, suggesting that miR-744 is a negative regulator of HSC activation. Conclusions: MiR-744-led suppression in HSC activation is most likely through TGFβ1 because exogenous TGFβ1 nearly negated miR-744 Agomir's action. This study suggests that reduction of miR-744 is a reliable biomarker for LC and miR-744/TGFβ1 relationship is a key regulator of LC.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。