miR-124-9-9* potentiates Ascl1-induced reprogramming of cultured Müller glia

miR-124-9-9* 增强 Ascl1 诱导的培养 Müller 胶质细胞重编程

阅读:7
作者:Stefanie Gabriele Wohl, Thomas Andrew Reh

Abstract

The Müller glia of fish provide a source for neuronal regeneration after injury, but they do not do so in mammals. We previously showed that lentiviral gene transfer of the transcription factor Achaete-scute homolog 1 (Ascl1/Mash1) in murine Müller glia cultures resulted in partial reprogramming of the cells to retinal progenitors. The microRNAs (miRNAs) miR-124-9-9* facilitate neuronal reprogramming of fibroblasts, but their role in glia reprogramming has not been reported. The aim of this study was to test whether (1) lentiviral gene transfer of miR-124-9-9* can reprogram Müller glia into retinal neurons and (2) miR-124-9-9* can improve Ascl1-induced reprogramming. Primary Müller glia cultures were generated from postnatal day (P) 11/12 mice, transduced with lentiviral particles, i.e., miR-124-9-9*-RFP, nonsense-RFP, Ascl1-GFP, or GFP-control. Gene expression and immunofluorescence analyses were performed within 3 weeks after infection. 1. Overexpression of miR-124-9-9* induced the expression of the proneural factor Ascl1 and additional markers of neurons, including TUJ1 and MAP2. 2. When Ascl1 and miR-124-9-9* were combined, 50 to 60% of Müller glia underwent neuronal reprogramming, whereas Ascl1 alone results in a 30 to 35% reprogramming rate. 3. Analysis of the miR-124-9-9* treated glial cells showed a reduction in the level of Ctdsp1 and Ptbp1, indicating a critical role for the REST pathway in the repression of neuronal genes in Müller glia. Our data further suggest that miR-124-9-9* and the REST complex may play a role in regulating the reprogramming of Müller glia to progenitors that underlies retinal regeneration in zebrafish.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。