Impact of Synaptic Device Variations on Pattern Recognition Accuracy in a Hardware Neural Network

突触装置变化对硬件神经网络中模式识别准确性的影响

阅读:7
作者:Sungho Kim, Meehyun Lim, Yeamin Kim, Hee-Dong Kim, Sung-Jin Choi

Abstract

Neuromorphic systems (hardware neural networks) derive inspiration from biological neural systems and are expected to be a computing breakthrough beyond conventional von Neumann architecture. Interestingly, in neuromorphic systems, the processing and storing of information can be performed simultaneously by modulating the connection strength of a synaptic device (i.e., synaptic weight). Previously investigated synaptic devices can emulate the functionality of biological synapses successfully by utilizing various nano-electronic phenomena; however, the impact of intrinsic synaptic device variability on the system performance has not yet been studied. Here, we perform a device-to-system level simulation of different synaptic device variation parameters in a designed neuromorphic system that has the potential for unsupervised learning and pattern recognition. The effects of variations in parameters such as the weight modulation nonlinearity (NL), the minimum-maximum weight (G min and G max ), and the weight update margin (ΔG) on the pattern recognition accuracy are analyzed quantitatively. These simulation results can provide guidelines for the continued design and optimization of a synaptic device for realizing a functional large-scale neuromorphic computing system.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。