Formation Mechanism of Multipurpose Silica Nanocapsules

多用途二氧化硅纳米胶囊的形成机理

阅读:11
作者:Michael Graham, Dmitry Shchukin

Abstract

Core-shell structures containing active materials can be fabricated using almost infinite reactant combinations. A mechanism to describe their formation is therefore useful. In this work, nanoscale all-silica shell capsules with an aqueous core were fabricated by the HCl-catalyzed condensation of tetraethyl orthosilicate (TEOS), using Pickering emulsion templates. Pickering emulsions were fabricated using modified commercial silica (LUDOX TMA) nanoparticles as stabilizers. By following the reaction over a 24 h period, a general mechanism for their formation is suggested. The interfacial activity of the Pickering emulsifiers heavily influenced the final capsule products. Fully stable Pickering emulsion templates with interfacially active particles allowed a highly stable sub-micrometer (500-600 nm) core-shell structure to form. Unstable Pickering emulsions, i.e., where interfacially inactive silica nanoparticles do not adsorb effectively to the interface and produce only partially stable emulsion droplets, resulted in capsule diameter increasing markedly (1+ μm). Scanning electron microscope (SEM) and transmission electron microscope (TEM) measurements revealed the layered silica "colloidosome" structure: a thin yet robust inner silica shell with modified silica nanoparticles anchored to the outer interface. Varying the composition of emulsion phases also affected the size of capsule products, allowing size tuning of the capsules. Silica capsules are promising protective nanocarriers for hydrophilic active materials in applications such as heat storage, sensors, and drug delivery.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。