Bimodal Imaging of Mouse Peripheral Nerves with Chlorin Tracers

利用二氢卟酚示踪剂对小鼠周围神经进行双峰成像

阅读:9
作者:Junior Gonzales, Javier Hernández-Gil, Thomas C Wilson, Dauren Adilbay, Mike Cornejo, Paula Demétrio de Souza Franca, Navjot Guru, Christina I Schroeder, Glenn F King, Jason S Lewis, Thomas Reiner

Abstract

Almost 17 million Americans have a history of cancer, a number expected to reach over 22 million by 2030. Cancer patients often undergo chemotherapy in the form of antineoplastic agents such as cis-platin and paclitaxel. Though effective, these agents can induce debilitating side effects; the most common neurotoxic effect, chemotherapy-induced peripheral neuropathy (CIPN), can endure long after treatment ends. Despite the widespread and chronic nature of the dysfunction, no tools exist to quantitatively measure chemotherapy-induced peripheral neuropathy. Such a tool would not only benefit patients but their stratification could also save significant financial and social costs associated with neuropathic pain. In our first step toward addressing this unmet clinical need, we explored a novel dual approach to localize peripheral nerves: Cerenkov luminescence imaging (CLI) and fluorescence imaging (FI). Our approach revolves around the targeting and imaging of voltage-gated sodium channel subtype NaV1.7, highly expressed in peripheral nerves from both harvested human and mouse tissues. For the first time, we show that Hsp1a, a radiolabeled NaV1.7-selective peptide isolated from Homoeomma spec. Peru, can serve as a targeted vector for delivering a radioactive sensor to the peripheral nervous system. In situ, we observe high signal-to-noise ratios in the sciatic nerves of animals injected with fluorescently labeled Hsp1a and radiolabeled Hsp1a. Moreover, confocal microscopy on fresh nerve tissue shows the same high ratios of fluorescence, corroborating our in vivo results. This study indicates that fluorescently labeled and radiolabeled Hsp1a tracers could be used to identify and demarcate nerves in a clinical setting.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。