Neurochemical characterization of zinc transporter 3-like immunoreactive (ZnT3(+)) neurons in the intramural ganglia of the porcine duodenum

猪十二指肠壁内神经节中锌转运蛋白 3 样免疫反应性(ZnT3(+))神经元的神经化学特征

阅读:5
作者:Joanna Wojtkiewicz, Sławomir Gonkowski, Maciej Równiak, Robert Crayton, Mariusz Majewski, Marek Jałyński

Abstract

The SLC30 family of divalent cation transporters is thought to be involved in the transport of zinc in a variety of cellular pathways. Zinc transporter 3 (ZnT3) is involved in the transport of zinc into synaptic vesicles or intracellular organelles. As the presence of ZnT3 immunoreactive neurons has recently been reported in both the central and peripheral nervous systems of the rat, the present study was aimed at disclosing the presence of a zinc-enriched neuron enteric population in the porcine duodenum to establish a preliminary insight into their neurochemical coding. Double- and triple-immunofluorescence labeling of the porcine duodenum for ZnT3 with the pan-neuronal marker (PGP 9.5), substance P, somatostatin, vasoactive intestinal peptide (VIP), nitric oxide synthase (NOS), leu-enkephalin, vesicular acetylcholine transporter (VAChT), neuropeptide Y, galanin (GAL), and calcitonin gene-related peptide were performed. Immunohistochemistry revealed that approximately 35, 43, and 48 % of all PGP9.5-postive neurons in the myenteric (MP), outer submucous (OSP), and inner submucous (ISP) plexuses, respectively, of the porcine duodenum were simultaneously ZnT3(+). In the present study, ZnT3(+) neurons coexpressed a broad spectrum of active substances, but co-localization patterns unique to the plexus were studied. In the ISP, all ZnT3(+) neurons were VAChT positive, and the largest populations among these cells formed ZnT3(+)/VAChT(+)/GAL(+) and ZnT3(+)/VAChT(+)/VIP(+) cells. In the OSP and MP, the numbers of ZnT3(+)/VAChT(+) neurons were two times smaller, and substantial subpopulations of ZnT3(+) neurons in both these plexuses formed ZnT3(+)/NOS(+) cells. The large population of ZnT3(+) neurons in the porcine duodenum and a broad spectrum of active substances which co-localize with this peptide suggest that ZnT3 takes part in the regulation of various processes in the gut both in normal physiology and during pathological processes.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。