Engineering bio-inspired peptide-polyurea hybrids with thermo-responsive shape memory behaviour

工程仿生肽-聚脲混合物具有热响应形状记忆行为

阅读:7
作者:Daseul Jang, Chase B Thompson, Sourav Chatterjee, LaShanda T J Korley

Abstract

Inspired by Nature's tunability driven by the modulation of structural organization, we utilize peptide motifs as an approach to tailor not only hierarchical structure, but also thermo-responsive shape memory properties of conventional polymeric materials. Specifically, poly(β-benzyl-L-aspartate)-b-poly(dimethylsiloxane)-b-poly(β-benzyl-L-aspartate) was incorporated as the soft segment in peptide-polyurea hybrids to manipulate hierarchical ordering through peptide secondary structure and a balance of inter- and intra-molecular hydrogen bonding. Employing these bioinspired peptidic polyureas, we investigated the influence of secondary structure on microphase-separated morphology, and shape fixity and recovery via attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR), small-angle X-ray scattering (SAXS) and dynamic mechanical analysis (DMA). The β-sheet motifs promoted phase mixing through extensive inter-molecular hydrogen bonding between the hard block and peptide segments and provided an increased chain elasticity, resulting in decreased shape fixity compared to a non-peptidic control. In contrast, intra-molecular hydrogen bonding driven by the α-helical arrangements yielded a microphase-separated and hierarchically ordered morphology, leading to an increase in the shape fixing ratio. These results indicate that peptide secondary structure provides a convenient handle for tuning shape memory properties by regulating hydrogen bonding with the surrounding polyurea hard segment, wherein extent of hydrogen bonding and phase mixing between the peptidic block and hard segment dictate the resulting shape memory behaviour. Furthermore, the ability to shift secondary structure as a function of temperature was also demonstrated as a pathway to influence shape memory response. This research highlights that peptide secondary conformation influences the hierarchical ordering and modulates the shape memory response of peptide-polymer hybrids. We anticipate that these findings will enable the design of smart bio-inspired materials with responsive and tailored function via a balance of hydrogen bonding character, structural organization, and mechanics.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。