BMP4 inhibits PDGF-induced proliferation and collagen synthesis via PKA-mediated inhibition of calpain-2 in pulmonary artery smooth muscle cells

BMP4 通过 PKA 介导抑制肺动脉平滑肌细胞中的钙蛋白酶-2 来抑制 PDGF 诱导的增殖和胶原合成

阅读:6
作者:Pengcheng Cai, Laszlo Kovacs, Sam Dong, Guangyu Wu, Yunchao Su

Abstract

In the present study, we investigated the effect of bone morphogenetic protein 4 (BMP4) on PDGF-induced cell proliferation and collagen synthesis in pulmonary artery smooth muscle cells (PASMCs). Normal human PASMCs were incubated with and without PDGF-BB in the absence and presence of BMP4 for 0.5 to 24 h. The protein levels of collagen-I, p-Smad2/3, p-Smad1/5, and intracellular active TGF-β1, calpain activity, and cell proliferation were then measured. The results showed that BMP4 induced an increase in p-Smad1/5 but had no effect on the protein levels of collagen-I, p-Smad2/3, and intracellular active TGF-β1 and calpain activity in control PASMCs. Nevertheless, BMP4 attenuated increases in cell proliferation and protein levels of collagen-I, p-Smad2/3, and intracellular active TGF-β1 and calpain activity in PASMCs exposed to PDGF-BB. Moreover, BMP4 increased PKA activity and inhibition of PKA prevented the inhibitory effects of BMP4 on PDGF-BB-induced calpain activation in normal PASMCs. The PKA activator forskolin recapitulated the suppressive effect of BMP4 on PDGF-induced calpain activation. Furthermore, BMP4 prevented a PDGF-induced decrease in calpain-2 phosphorylation at serine-369 in normal PASMCs. Finally, BMP4 did not attenuate PDGF-induced increases in cell proliferation, collagen-I protein levels, and calpain activation and did not induce PKA activation and did not prevent a PDGF-induced decrease in calpain-2 phosphorylation at serine-369 in PASMCs from idiopathic pulmonary arterial hypertension (PAH) patients. These data demonstrate that BMP4 inhibits PDGF-induced cell proliferation and collagen synthesis via PKA-mediated inhibition of calpain-2 in normal PASMCs. The inhibitory effects of BMP4 on PDGF-induced cell proliferation, collagen synthesis, and calpain-2 activation are impaired in PASMCs from PAH patients, which may contribute to pulmonary vascular remodeling in PAH.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。