High Catalytic Activity of CoxPt100-x Alloys for Phenolic Compound Reduction

CoxPt100-x 合金对酚类化合物还原的高催化活性

阅读:5
作者:Oana-Georgiana Dragos-Pinzaru, Gabriela Buema, Luiza Racila, Gabriel Ababei, Firuta Borza, George Stoian, Ibro Tabakovic, Nicoleta Lupu

Abstract

In this study, we report the influence of the Pt concentration in CoxPt100-x alloys on the catalytic activity of the alloys for 4-nitrophenol (4-NP) reduction. More precisely, a series of CoxPt100-x alloys with a Pt concentration ranging between 60% and 95% were prepared using electrodeposition at controlled potentials from stable hexachloroplatinate aqueous solution. The Pt concentration was tuned by varying the electrodeposition potential from -0.6 to -0.9 V. The changes in the CoxPt100-x alloy microstructure and crystalline structure have been investigated using SEM and TEM analysis. Our results show that the microstructure and the crystalline structure of the as-prepared materials do not depend on the electrodeposition potential. However, the catalytic activity of CoxPt100-x alloys is closely correlated with the potential applied during electrochemical synthesis, hence the Pt content. We demonstrated that the synthesized materials present a high catalytic activity (approx. 90%) after six cycles of reusability despite the fact that the Pt content of the as-prepared alloys decreases. The easy preparation method that guarantees more than 97% catalytic activity of the CoxPt100-x alloys, the easy recovery from solution, and the possibility of reusing the CoxPt100-x alloys are the benefits of the present study.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。