Root exudate chemical cues of an invasive plant modulate oviposition behavior and survivorship of a malaria mosquito vector

入侵植物根系分泌物化学线索调节疟蚊媒介的产卵行为和存活率

阅读:6
作者:Trizah K Milugo, David P Tchouassi, Reginald A Kavishe, Rhoel R Dinglasan, Baldwyn Torto

Abstract

Gravid female Anopheles gambiae mosquitoes identify suitable oviposition sites through a repertoire of cues, but the influence of allelochemicals, especially root phytochemicals in modulating this behavior and impacting subsequent progeny bionomics remains unexplored. We addressed these questions in the malaria vector Anopheles gambiae and its invasive host plant Parthenium hysterophorus. Using chemical analysis combined with laboratory behavioral assays, we demonstrate that a blend of terpenes, namely α-pinene, α-phellandrene, β-phellandrene, 3-carene and (E)-caryophyllene emitted from P. hysterophorus root exudate treated-water attracted gravid females. However, fewer eggs (55%) hatched in this treatment than in control water (66%). The sesquiterpene lactone parthenin, identified in both the natural aquatic habitat harboring P. hysterophorus and root exudate-treated water was found to be responsible for the ovicidal effect. Moreover, larvae exposed to parthenin developed 2 to 3 days earlier but survived 4 to 5 days longer as adults (median larval survival time = 9 days (all replicates);11 to 12 days as adults) than the non-exposed control (median larval survival time = 11 days (reps 1 & 2), 12 days (rep 3); 6 to 7 days as adults). These results improve our understanding of the risk and benefits of oviposition site selection by gravid An. gambiae females and the role root exudate allelochemicals could play on anopheline bionomics, with potential implications in malaria transmission.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。