Label-free proteomic analysis of serum exosomes from paroxysmal atrial fibrillation patients

阵发性房颤患者血清外泌体的无标记蛋白质组学分析

阅读:5
作者:Hanwen Ni, Wenqi Pan, Qi Jin, Yucai Xie, Ning Zhang, Kang Chen, Tianyou Lin, Changjian Lin, Yun Xie, Jiemin Wu, Peihua Ni, Liqun Wu

Background

Atrial fibrillation (AF) is the most common cardiac heterogeneous rhythm disorder. It represents a major cause of mortality and morbidity, mainly related to embolic events and heart failure. Mechanisms of AF are complex and remain incompletely understood. Recent evidence suggests exosomes are membrane-coated objects released by many cell-types. Their presence in body fluids and the variable surface composition and content render them attractive as a mechanism for potential biomarkers. However, the content of serum exosomes of AF patients has not been fully delineated.

Conclusions

These results revealed the composition and potential function of AF serum exosomes, thus providing a new perspective on the complement system and protein folding to AF.

Methods

In this work, the serum exosomes from AF patients and healthy donors were used to compare changes in the exosome protein content. Exosomes were isolated from serum of AF patients and healthy donors and their purity was confirmed by Western blotting assays and transmission electron microscopy (TEM). Label-free LC-MS/MS quantitative proteomic analysis was applied to analyze protein content of serum exosomes.

Results

A total of 440 exosomal protein groups were identified, differentially expressed proteins were filtrated with fold change ≥ 2.0 (AF/controls protein abundance ratio ≥ 2 or ≤ 0.5) and p value less than 0.05 (p < 0.05), significantly changed in abundance group contains 39 elevated proteins and 18 reduced proteins, while consistent presence/absence expression profile group contains 40 elevated proteins and 75 reduced proteins. Bioinformatic analysis of differential exosomal proteins confirmed the significant enrichment of components involved in the anticoagulation, complement system and protein folding. Parallel-Reaction Monitoring Relative Quantitative Analysis (PRM) further suggested that AF related to complement system and protein folding. Conclusions: These results revealed the composition and potential function of AF serum exosomes, thus providing a new perspective on the complement system and protein folding to AF.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。