CD97 amplifies LPA receptor signaling and promotes thyroid cancer progression in a mouse model

CD97 可放大 LPA 受体信号并促进小鼠模型中的甲状腺癌进展

阅读:10
作者:Y Ward, R Lake, P L Martin, K Killian, P Salerno, T Wang, P Meltzer, M Merino, S-y Cheng, M Santoro, G Garcia-Rostan, K Kelly

Abstract

CD97, a member of the adhesion family of G-protein-coupled receptors (GPCRs), complexes with and potentiates lysophosphatidic acid (LPA) receptor signaling to the downstream effector RHOA. We show here that CD97 was expressed in a majority of thyroid cancers but not normal thyroid epithelium and that the level of CD97 expression was further elevated with progression to poorly differentiated and undifferentiated carcinoma. Intratumoral progression also showed that CD97 expression correlates with invasiveness and dedifferentiation. To determine the functional role of CD97, we produced a transgenic model of thyroglobulin promoter-driven CD97 expression. Transgenic CD97 in combination with Thrb(PV), an established mouse model of thyroid follicular cell carcinogenesis, significantly increased the occurrence of vascular invasion and lung metastasis. Expression of transgenic CD97 in thyroid epithelium led to elevated ERK phosphorylation and increased numbers of Ki67+ cells in developing tumors. In addition, tumor cell cultures derived from CD97 transgenic as compared with non-transgenic mice demonstrated enhanced, constitutive and LPA-stimulated ERK activation. In human thyroid cancer cell lines, CD97 depletion reduced RHO-GTP and decreased LPA-stimulated invasion but not EGF-stimulated invasion, further suggesting that CD97 influences an LPA-associated mechanism of progression. Consistent with the above, CD97 expression in human thyroid cancers correlated with LPA receptor and markers of aggressiveness including Ki67 and pAKT. This study shows an autonomous effect of CD97 on thyroid cancer progression and supports the investigation of this GPCR as a therapeutic target for these cancers.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。