Exercise suppresses mouse systemic AApoAII amyloidosis through enhancement of the p38 MAPK signaling pathway

运动通过增强 p38 MAPK 信号通路抑制小鼠系统性 AApoAII 淀粉样变性

阅读:9
作者:Xiaoran Cui, Jinko Sawashita, Jian Dai, Chang Liu, Yuichi Igarashi, Masayuki Mori, Hiroki Miyahara, Keiichi Higuchi

Abstract

Exercise interventions are beneficial for reducing the risk of age-related diseases, including amyloidosis, but the underlying molecular links remain unclear. Here, we investigated the protective role of interval exercise training in a mouse model of age-related systemic apolipoprotein A-II amyloidosis (AApoAII) and identified potential mechanisms. Mice subjected to 16 weeks of exercise showed improved whole-body physiologic functions and exhibited substantial inhibition of amyloidosis, particularly in the liver and spleen. Exercise activated the hepatic p38 mitogen-activated protein kinase (p38 MAPK) signaling pathway and the downstream transcription factor tumor suppressor p53. This activation resulted in elevated expression and phosphorylation of heat shock protein beta-1 (HSPB1), a chaperone that defends against protein aggregation. In amyloidosis-induced mice, the hepatic p38 MAPK-related adaptive responses were additively enhanced by exercise. We observed that with exercise, greater amounts of phosphorylated HSPB1 accumulated at amyloid deposition areas, which we suspect inhibits amyloid fibril formation. Collectively, our findings demonstrate the exercise-activated specific chaperone prevention of amyloidosis, and suggest that exercise may amplify intracellular stress-related protective adaptation pathways against age-associated disorders, such as amyloidosis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。