Phosphatidylinositol 3-kinase p110α mediates phosphorylation of AMP-activated protein kinase in myoblasts

磷脂酰肌醇 3-激酶 p110α 介导成肌细胞中 AMP 活化蛋白激酶的磷酸化

阅读:5
作者:Ronald W Matheny Jr, Alyssa V Geddis, Mary N Abdalla, Luis A Leandry

Abstract

AMP-activated protein kinase (AMPK) is a serine/threonine kinase that functions as a sensor of intracellular energy. Activation of AMPK is associated with increased phosphorylation of the α-subunit at threonine 172 (T172) and decreased phosphorylation at serine 485 in AMPKα1 and serine 491 in AMPKα2 (S485/491). One potential mediator of AMPK phosphorylation is phosphatidylinositol 3-kinase (PI3K); however, the mechanism and the identities of the specific PI3K isoforms that regulate AMPK activation are not known. To determine whether PI3K p110α regulated AMPK activation in muscle cells, C2C12 myoblasts were subjected to pharmacological inhibition of p110α, siRNA directed against p110α, or overexpression of constitutively-active or dominant negative p110α. Chemical inhibition, siRNA, and expression of dominant-negative p110α were all associated with increased AMPK T172 phosphorylation, whereas expression of constitutively-active p110α reduced T172 phosphorylation. Conversely, pharmacological inhibition of p110α reduced AMPK S485/491 phosphorylation, while constitutively-active p110α increased AMPK S485/491 phosphorylation. This p110α-mediated increase in AMPK S485/491 phosphorylation was eliminated in the presence of the Akt inhibitor MK2206, suggesting that p110α-mediated phosphorylation of AMPKα at S485/491 is Akt-dependent. In response to oligomycin or serum-starvation, AMPK T172 phosphorylation was elevated in p110α-deficient myoblasts compared to control myoblasts. Overall, our findings identify PI3K p110α as a mediator of AMPK phosphorylation in myoblasts.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。