Annexin A1 induces oxaliplatin resistance of gastric cancer through autophagy by targeting PI3K/AKT/mTOR

膜联蛋白A1靶向PI3K/AKT/mTOR通过自噬诱导胃癌奥沙利铂耐药

阅读:10
作者:Jun Ren, Zhiqing Hu, Gengming Niu, Jie Xia, Xing Wang, Runqi Hong, Jiawei Gu, Daorong Wang, Chongwei Ke

Abstract

Resistance to oxaliplatin (OXA) is a major cause of recurrence in gastric cancer (GC) patients. Autophagy is an important factor ensuring the survival of cancer cells under chemotherapeutic stress. We aimed to investigate the role of OXA-related genes in autophagy and chemoresistance of gastric cancer cells. We established OXA-resistant gastric cancer cells and used RNA-seq to profile gene expression within OXA-resistant GC and corresponding parental cells. Immunohistochemistry and RT-qPCR was performed to detect gene expression in tissues of two cohorts of GC patients who received OXA-based chemotherapy. The chemoresistant effects of the gene were assessed by cell viability, apoptosis, and autophagy assays. The effects of the gene on autophagy were assessed with mRFP-GFP-LC3 and Western blotting (WB). Gene set enrichment analysis (GSEA) and WB were performed to detect the activity of PI3K/AKT/mTOR signaling under the regulation of the gene. The OXA-resistant property of GC cells is related to their enhanced autophagic activity. Based on RNA-seq profiling, ANXA1 was selected as a candidate, as it was upregulated significantly in OXA-resistant cells. Furthermore, we found that higher ANXA1 expression before chemotherapy was associated with subsequent development of resistance to oxaliplatin, and overexpression of ANXA1 promoted the resistance of gastric cancer cells to oxaliplatin. So, it may serve as a key regulator in GC chemo-resistance knockdown of ANXA1, via inhibiting autophagy, enhancing the sensitivity of OXA-resistant GC cells to OXA in vitro and in vivo. Mechanically, we identified that PI3K/AKT/mTOR signaling pathway was activated in the ANXA1 stable knockdown AGS/OXA cells, which leads to the suppression of autophagy. ANXA1 functions as a chemoresistant gene in GC cells by targeting the PI3K/AKT/mTOR signaling pathway and might be a prognostic predictor for GC patients who receive OXA-based chemotherapy.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。