The role of chemerin in the regulation of cGAS-STING pathway in gestational diabetes mellitus placenta

趋化因子在妊娠期糖尿病胎盘中调控cGAS-STING通路的作用

阅读:5
作者:Xuan Zhou, Huiting Zhang, Yi Jiang, Lijie Wei, Yuting Chen, Jingyi Zhang, Peng Gao, Shenglan Zhu, Chenyun Fang, Yuanyuan Du, Rui Su, Mengzhou He, Jun Yu, Shaoshuai Wang, Wencheng Ding, Ling Feng

Abstract

Recent studies already confirmed that placenta mitochondrial dysfunction is associated with the progression of gestational diabetes mellitus (GDM). Besides, a possible relationship between adipokine chemerin and disulfide-bond A oxidoreductase-like protein (DsbA-L) had been revealed, whereas the potential interaction remains unclear. In addition, very little is still known about the cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) signaling pathway and its mechanisms of action in the context of GDM. The present study aims to investigate the underlying mechanism of cGAS-STING pathway and its regulatory relationship with chemerin in GDM. A total of 50 participants, including 25 cases of GDM patients and 25 pregnant women with normal glucose tolerance, were enrolled, and their placenta tissues at term labor were collected. Besides, an insulin resistance cell model was established on the human trophoblastic cell line to explore the molecular mechanism of chemerin on cGAS-STING pathway. Results showed that there were mitochondrial pathological changes in GDM placenta, accompanied by the decreased expression of DsbA-L, increased level of chemerin, and the activation of cGAS-STING pathway. In the insulin resistant cell model, overexpression of chemerin upregulated protein expression of DsbA-L, and recombinant chemerin presented time-dependent inhibition on the cGAS-STING pathway, but this effect was not dependent on DsbA-L. In conclusion, elevated chemerin is probably a protective mechanism, which may be a potential therapeutic strategy for GDM.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。