Circ_0000396 inhibits rheumatoid arthritis synovial fibroblast growth and inflammatory response via miR-203/HBP1 axis

Circ_0000396 通过 miR-203/HBP1 轴抑制类风湿关节炎滑膜成纤维细胞生长和炎症反应

阅读:6
作者:Laifang Wang, Qing Zhao, Na Wang, Yanjie Ding, Lingli Kong, Jing Wang

Background

Circ_0000396 was found to be down-regulated in the rheumatoid arthritis (RA) patients and had a high diagnostic value. However, the function and mechanisms underlying circ_0000396 in RA progression remain unclear.

Conclusion

Circ_0000396 inhibited the growth and inflammation in RASFs by regulating miR-203/HBP1 axis, providing a potential therapeutic target for RA.

Methods

The expression of circ_0000396, microRNA (miR)-203 and HMG-box transcription factor 1 (HBP1) was detected using qRT-PCR and western blot. The proliferative and apoptotic capabilities of rheumatoid arthritis synovial fibroblasts (RASFs) were measured by colony formation, CCK-8, flow cytometry and western blot assays, respectively. The levels of interleukins (IL)-6, IL-1β, IL-8 and tumor necrosis factor-α (TNF-α) were detected using enzyme-linked immunosorbent assay (ELISA). The target correlations between miR-203 and circ_0000396 or HBP1 were validated using pull-down and dual-luciferase reporter assay.

Results

Circ_0000396 was decreased in RA synovial tissues and RASFs, and overexpression of circ_0000396 suppressed cell proliferation, induced cell apoptosis and reduced the release of inflammatory cytokine IL-6, IL-1β, IL-8 and TNF-α in RASFs, while circ_0000396 deletion functioned oppositely. MiR-203 was confirmed to be a target of circ_0000396, and miR-203 reversed the protective effects of circ_0000396 on the dysfunction and inflammation of RASFs. HBP1 was a target of miR-203, and silencing miR-203 inhibited RASFs malignant changes by regulating HBP1. In addition, circ_0000396 could regulate HBP1 by sponging miR-203, and HBP1 decrease attenuated the effects of circ_0000396 on RASF growth and inflammation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。