GLP1R Attenuates Sympathetic Response to High Glucose via Carotid Body Inhibition

GLP1R通过抑制颈动脉体减弱交感神经对高血糖的反应

阅读:6
作者:Audrys G Pauza, Pratik Thakkar, Tatjana Tasic, Igor Felippe, Paul Bishop, Michael P Greenwood, Kristina Rysevaite-Kyguoliene, Julia Ast, Johannes Broichhagen, David J Hodson, Helio C Salgado, Dainius H Pauza, Nina Japundzic-Zigon, Julian F R Paton, David Murphy

Background

Aberrant sympathetic nerve activity exacerbates cardiovascular risk in hypertension and diabetes, which are common comorbidities, yet clinically sympathetic nerve activity remains poorly controlled. The hypertensive diabetic state is associated with increased reflex sensitivity and tonic drive from the peripheral chemoreceptors, the cause of which is unknown. We have previously shown hypertension to be critically dependent on the carotid body (CB) input in spontaneously hypertensive rat, a model that also exhibits a number of diabetic traits. CB overstimulation by insulin and leptin has been similarly implicated in the development of increased sympathetic nerve activity in metabolic syndrome and obesity. Thus, we hypothesized that in hypertensive diabetic state (spontaneously hypertensive rat), the CB is sensitized by altered metabolic signaling causing excessive sympathetic activity levels and dysfunctional reflex regulation.

Conclusions

We show that GLP1 (glucagon-like peptide-1) modulates the peripheral chemoreflex acting on the CB, supporting this organ as a multimodal receptor. Our findings pinpoint CBs as potential targets for ameliorating excessive sympathetic activity using GLP1R agonists in the hypertensive-diabetic condition.

Methods

Using a hypothesis-free RNA-seq approach, we investigated potential molecular targets implicated in energy metabolism mediating CB sensitization and its regulation of sympathetic outflow in experimental hypertension. Identified targets were characterized using molecular and functional techniques assessing peripheral chemoreflex sensitivity in situ and in vivo.

Results

We discovered GLP1R (glucagon-like peptide-1 receptor) expression in the CBs of rat and human and showed that its decreased expression is linked to sympathetic hyperactivity in rats with cardiometabolic disease. We demonstrate GLP1R to be localized to CB chemosensory cells, while targeted administration of GLP1R agonist to the CB lowered its basal discharge and attenuated chemoreflex-evoked blood pressure and sympathetic responses. Importantly, hyperglycemia-induced peripheral chemoreflex sensitization and associated basal sympathetic overactivity were abolished by GLP1R activation in the CB suggesting a role in a homeostatic response to high blood glucose. Conclusions: We show that GLP1 (glucagon-like peptide-1) modulates the peripheral chemoreflex acting on the CB, supporting this organ as a multimodal receptor. Our findings pinpoint CBs as potential targets for ameliorating excessive sympathetic activity using GLP1R agonists in the hypertensive-diabetic condition.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。