Circular RNA circCSPP1 promotes the occurrence and development of colon cancer by sponging miR-431 and regulating ROCK1 and ZEB1

环状RNA circCSPP1通过吸附miR-431及调控ROCK1和ZEB1促进结肠癌的发生发展

阅读:7
作者:Jin Wang #, Lei Zhou #, Bingxin Chen #, Zhuwen Yu #, Jianglei Zhang, Zhe Zhang, Chenrui Hu, Yanjin Bai, Xiaokang Ruan, Shengjia Wang, Jun Ouyang, Airong Wu, Xin Zhao

Background

Colon cancer is a common malignant tumor of the digestive tract, and its incidence is ranked third among gastrointestinal tumors. The present study aims to investigate the role of a novel circular RNA (circCSPP1) in colon cancer and its underlying molecular mechanisms.

Conclusion

Taken together, the findings of the present study indicated that circCSPP1 may function as a competing endogenous RNA in the progression of colon cancer by regulating the miR-431/ROCK1 and miR-431/ZEB1 signaling axes.

Methods

Bioinformatics analysis and reverse transcription-quantitative PCR were used to detect the expression levels of circCSPP1 in colon cancer tissues and cell lines. The effects of circCSPP1 on the behavior of colon cancer cells were investigated using CCK-8, transwell and clonogenic assays. Bioinformatics analysis along with luciferase, fluorescence in situ hybridization and RNA pull-down assays were used to reveal the interaction between circCSPP1, microRNA (miR)-431, Rho associated coiled-coil containing protein kinase 1 (ROCK1) and zinc finger E-box binding homeobox 1 (ZEB1).

Results

It was found that circCSPP1 expression was significantly upregulated in colon cancer tissues and cell lines. Overexpression of circCSPP1 significantly promoted the proliferation, migration and invasion of colon cancer cells, whereas silencing of circCSPP1 exerted opposite effects. Mechanistically, circCSPP1 was found to bind with miR-431. In addition, ROCK1 and ZEB1 were identified as the target genes of miR-431. Rescue experiments further confirmed the interaction between circCSPP1, miR-431, ROCK1 and ZEB1. Moreover, circCSPP1 promoted the expression level of ROCK1, cyclin D1, cyclin-dependent kinase 4, ZEB1 and Snail, and lowered the E-cadherin expression level.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。