Protective role of hydrogen sulfide against diabetic cardiomyopathy via alleviating necroptosis

硫化氢通过减轻坏死性凋亡对糖尿病心肌病的保护作用

阅读:3
作者:Weiwei Gong, Shuping Zhang, Yun Chen, Jieru Shen, Yangyang Zheng, Xiao Liu, Mingxian Zhu, Guoliang Meng

Abstract

Diabetic cardiomyopathy lacks effective and novel methods. Hydrogen sulfide (H2S) as the third gasotransmitter plays an important role in the cardiovascular system. Our study was to elucidate the protective effect and possible mechanism of H2S on diabetic cardiomyopathy from the perspective of necroptosis. Leptin receptor deficiency (db/db) mice and streptozotocin (STZ)-induced diabetic cystathionine-γ-lyase (CSE) knockout (KO) mice were investigated. In addition, cardiomyocytes were stimulated with high glucose. We found that plasma H2S level, myocardial H2S production and CSE mRNA expression was impaired in the diabetic mice. CSE deficiency exacerbated diabetic cardiomyopathy, and promoted myocardial oxidative stress, necroptosis and inflammasome in STZ-induced mice. CSE inhibitor dl-propargylglycine (PAG) aggravated cell damage and oxidative stress, deteriorated necroptosis and inflammasome in cardiomyocytes with high glucose stimulation. H2S donor sodium hydrosulfide (NaHS) improved diabetic cardiomyopathy, attenuated myocardial oxidative stress, necroptosis and the NLR family pyrin domain-containing protein 3 (NLRP3) in db/db mice. NaHS also alleviated cell damage, oxidative stress, necroptosis and inflammasome in cardiomyocytes with high glucose stimulation. In Conclusion, H2S deficiency aggravated mitochondrial damage, increased reactive oxygen species accumulation, promoted necroptosis, activated NLRP3 inflammasome, and finally exacerbated diabetic cardiomyopathy. Exogenous H2S supplementation alleviated necroptosis to suppress NLRP3 inflammasome activation and attenuate diabetic cardiomyopathy via mitochondrial dysfunction improvement and oxidative stress inhibition. Our study provides the first evidence and a new mechanism that necroptosis inhibition by a pharmacological manner of H2S administration protected against diabetic cardiomyopathy. It is beneficial to provide a novel strategy for the prevention and treatment of diabetic cardiomyopathy.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。