Dysregulation of Neuregulin-1/ErbB signaling in the hippocampus of rats after administration of doxorubicin

给予阿霉素后大鼠海马中 Neuregulin-1/ErbB 信号失调

阅读:5
作者:Dehua Liao, Yujin Guo, Daxiong Xiang, Ruili Dang, Pengfei Xu, Hualin Cai, Lizhi Cao, Pei Jiang

Conclusion

Our data first showed the Dox-induced alterations of the NRG1/ErbB system in the hippocampus, indicating the potential involvement of the NRG1/ErbB pathway in the Dox-induced nervous system dysfunction.

Methods

The drug was administered every 2 days at a dose of 2.5 mg/kg, and the animals in different groups were treated with intraperitoneal injection for three or seven times, respectively.

Objective

Long-term use of doxorubicin (Dox) can cause neurobiological side effects associated with depression, but the underlying mechanisms remain equivocal. While recent evidence has indicated that Neuregulin-1 (NRG1) and its ErbB receptors play an essential role in neural function, much is still unknown concerning the biological link between the NRG1/ErbB pathway and the Dox-induced neurotoxicity. Therefore, we examined the protein expression of NRG1 and ErbB receptors in the hippocampus of rats following Dox treatment. Materials and

Results

Our data showed that the rats treated with Dox for seven times (DoxL group) exhibited depression-like behaviors, whereas the short-term treatment (DoxS group) had no effect on the behavioral changes. Dox treatment also induced the neural apoptosis with more severe neurotoxicity. Intriguingly, the expression of NRG1 and the ratio of pErbB4/ErbB4 and pErbB2/ErbB2 were significantly decreased in the DoxL group, but enhanced activation of ErbB receptors was observed in the DoxS group. In parallel, administration of Dox for seven times suppressed the downstream Akt and ERK phosphorylation, while the Akt phosphorylation was enhanced with the administration of Dox for three times.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。