Effect of Probiotics in Stress-Associated Constipation Model in Zebrafish (Danio rerio) Larvae

益生菌对斑马鱼(Danio rerio)幼虫应激性便秘模型的影响

阅读:4
作者:Ayoung Lee, Seung Young Kim, Seyoung Kang, Seong Hee Kang, Dong Woo Kim, Jung Wan Choe, Jong Jin Hyun, Sung Woo Jung, Young Kul Jung, Ja Seol Koo, Hyung Joon Yim, Suhyun Kim

Abstract

The pathophysiology of functional bowel disorders is complex, involving disruptions in gut motility, visceral hypersensitivity, gut-brain-microbiota interactions, and psychosocial factors. Light pollution, as an environmental stressor, has been associated with disruptions in circadian rhythms and the aggravation of stress-related conditions. In this study, we investigated the effects of environmental stress, particularly continuous light exposure, on intestinal motility and inflammation using zebrafish larvae as a model system. We also evaluated the efficacy of probiotics, specifically Bifidobacterium longum (B. longum), at alleviating stress-induced constipation. Our results showed that continuous light exposure in zebrafish larvae increased the cortisol levels and reduced the intestinal motility, establishing a stress-induced-constipation model. We observed increased inflammatory markers and decreased intestinal neural activity in response to stress. Furthermore, the expressions of aquaporins and vasoactive intestinal peptide, crucial for regulating water transport and intestinal motility, were altered in the light-induced constipation model. Administration of probiotics, specifically B. longum, ameliorated the stress-induced constipation by reducing the cortisol levels, modulating the intestinal inflammation, and restoring the intestinal motility and neural activity. These findings highlight the potential of probiotics to modulate the gut-brain axis and alleviate stress-induced constipation. Therefore, this study provides a valuable understanding of the complex interplay among environmental stressors, gut function, and potential therapeutic strategies.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。