Effects of endometriosis on immunity and mucosal microbial community dynamics in female olive baboons

子宫内膜异位症对雌性橄榄狒狒免疫力和粘膜微生物群落动态的影响

阅读:5
作者:Nhung Le, Melissa Cregger, Asgerally Fazleabas, Andrea Braundmeier-Fleming

Abstract

Endometriosis is defined as the growth of endometrial tissue in ectopic locations, and is associated with altered immune and microbial phenotypes. It is unclear if these changes are the result of the disease or may be causative. We induced endometriosis in non-human primates (Papio Anubis) to test our hypothesis that the growth of endometriotic lesions results in alterations in immune and microbial dynamics that may advance disease progression. Baboon samples were collected pre-inoculation (prior to disease induction), at 3, 6, 9, and 15 months after disease induction. Tolerant regulatory T-cells (Tregs) and inflammatory T-helper 17 (Th17) cells were identified in peripheral blood and within the eutopic/ectopic endometrial tissues. Microbiome communities were identified in fecal/urine samples. The induction of endometriosis decreased peripheral Tregs cells while Th17 cells increased at all post-induction collections, thus reducing the Tregs:Th17 cells ratio, indicating systemic inflammation. Microbiome diversity and abundance were altered at each sample site after disease induction. Thus, induction of endometriosis in baboons caused an immune shift toward an inflammatory profile and altered mucosal microbial profiles, which may drive inflammation through production of inflammatory mediators. Immune and microbial profiling may lead to innovative diagnostic tools and novel therapies for endometriosis treatment.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。