Spatial patterns of the cap-binding complex eIF4F in human melanoma cells

人类黑色素瘤细胞中帽结合复合物 eIF4F 的空间模式

阅读:3
作者:Xinpu Tang, Yi Pu, Haoning Peng, Kaixiu Li, Sara Faouzi, Tianjian Lu, Dan Pu, Michael Cerezo, Jianguo Xu, Lu Li, Caroline Robert, Shensi Shen

Abstract

As a central node of protein synthesis, the cap-binding complex, eukaryotic translation initiation factor 4 F (eIF4F), is involved in cell homeostasis, development and tumorigenesis. A large body of literature exists on the regulation and function of eIF4F in cancer cells, however the intracellular localization patterns of this complex are largely unknown. Since different subsets of mRNAs are translated in distinct subcellular compartments, understanding the distribution of translation initiation factors in the cell is of major interest. Here, we developed an in situ detection method for eIF4F at the single cell level. By using an image-based spot feature analysis pipeline as well as supervised machine learning, we identify five distinct spatial patterns of the eIF4F translation initiation complex in human melanoma cells. The quantity of eIF4F complex per cell correlated with the global mRNA translation activity, and its variation is dynamically regulated by cell state or extracellular stimuli. In contrast, the spatial patterns of eIF4F complexes at the single cell level could distinguish melanoma cells harboring different oncogenic driver mutations. This suggests that different tumorigenic contexts differentially regulate the subcellular localization of mRNA translation, with specific localization of eIF4F potentially associated with melanoma cell chemoresistance.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。