Nanoparticle-Mediated Cell Capture Enables Rapid Endothelialization of a Novel Bare Metal Stent

纳米粒子介导的细胞捕获可实现新型裸金属支架的快速内皮化

阅读:3
作者:Brandon J Tefft, Susheil Uthamaraj, Adriana Harbuzariu, J Jonathan Harburn, Tyra A Witt, Brant Newman, Peter J Psaltis, Ota Hlinomaz, David R Holmes Jr, Rajiv Gulati, Robert D Simari, Dan Dragomir-Daescu, Gurpreet S Sandhu

Abstract

Incomplete endothelialization of intracoronary stents has been associated with stent thrombosis and recurrent symptoms, whereas prolonged use of dual antiplatelet therapy increases bleeding-related adverse events. Facilitated endothelialization has the potential to improve clinical outcomes in patients who are unable to tolerate dual antiplatelet therapy. The objective of this study was to demonstrate the feasibility of magnetic cell capture to rapidly endothelialize intracoronary stents in a large animal model. A novel stent was developed from a magnetizable duplex stainless steel (2205 SS). Polylactic-co-glycolic acid and magnetite (Fe3O4) were used to synthesize biodegradable superparamagnetic iron oxide nanoparticles, and these were used to label autologous blood outgrowth endothelial cells. Magnetic 2205 SS and nonmagnetic 316L SS control stents were implanted in the coronary arteries of pigs (n = 11), followed by intracoronary delivery of magnetically labeled cells to 2205 SS stents. In this study, we show extensive endothelialization of magnetic 2205 SS stents (median 98.4% cell coverage) within 3 days, whereas the control 316L SS stents exhibited significantly less coverage (median 48.9% cell coverage, p < 0.0001). This demonstrates the ability of intracoronary delivery of magnetic nanoparticle labeled autologous endothelial cells to improve endothelialization of magnetized coronary stents within 3 days of implantation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。