The mechanotransduction of MLO-Y4 cells is disrupted by the senescence-associated secretory phenotype of neighboring cells

MLO-Y4 细胞的机械转导被邻近细胞的衰老相关分泌表型破坏

阅读:5
作者:Joseph D Gardinier, Amit Chougule, Chunbin Zhang

Abstract

Age-related bone loss is attributed to the accumulation of senescent cells and their increasing production of inflammatory cytokines as part of the senescence-associated secretory phenotype (SASP). In otherwise healthy individuals, osteocytes play a key role in maintaining bone mass through their primary function of responding to skeletal loading. Given that osteocytes' response to loading is known to steadily decline with age, we hypothesized that the increasing presence of senescent cells and their SASP inhibit osteocytes' response to loading. To test this hypothesis, we developed two in vitro models of senescent osteocytes and osteoblasts derived from MLO-Y4 and MC3T3 cell lines, respectively. The senescent phenotype was unique to each cell type based on distinct changes in cell cycle inhibitors and SASP profile. The SASP profile of senescent osteocytes was in part dependent on nuclear factor-κB signaling and presents a new potential mechanism to target the SASP in bone. Nonsenescent MLO-Y4 cells cultured with the SASP of each senescent cell type failed to exhibit changes in gene expression as well as ERK phosphorylation and prostaglandin E2 release. The SASP of senescent osteocytes had the largest effect and neutralizing interleukin-6 (IL-6) as part of the SASP restored osteocytes' response to loading. The loss in mechanotransduction due to IL-6 was attributed to a decrease in P2X7 expression and overall sensitivity to purinergic signaling. Altogether, these findings demonstrate that the SASP of senescent cells have a negative effect on the mechanotransduction of osteocytes and that IL-6 is a key SASP component that contributes to the loss in mechanotransduction.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。