Epigenetic therapy with chidamide alone or combined with 5‑azacitidine exerts antitumour effects on acute myeloid leukaemia cells in vitro

表观遗传治疗单独使用西达本胺或与 5-阿扎胞苷联合使用对急性髓系白血病细胞具有体外抗肿瘤作用

阅读:4
作者:Zheng Li #, Jian Zhang #, Min Zhou #, Jin-Li Li, Qiao-Cheng Qiu, Jian-Hong Fu, Sheng-Li Xue, Hui-Ying Qiu

Abstract

Chidamide, a selective histone deacetylase inhibitor, has antitumour effects. 5‑azacitidine (5‑AZA), a hypomethylating agent, is effective in treating acute myeloid leukaemia (AML) and myelodysplastic syndrome. However, to the best of our knowledge, the effect of chidamide and 5‑AZA on AML cell lines has not been fully investigated. In the present study, the antileukaemia activity of chidamide, alone and in combination with 5‑AZA, was assessed on different subtypes of AML cell lines (M1‑M5) and primary samples from several patients with AML in vitro. The results indicated that the proliferation of leukaemia cells was significantly and dose‑dependently inhibited by chidamide and 5‑AZA alone or in combination. The combination also had marked synergistic effects to induce apoptosis of AML cells. The apoptosis of leukaemia cells was induced via downregulation of BCL‑2 and myeloid‑cell leukemia 1 (MCL‑1) levels. Of note, chidamide also degraded the MCL‑1 protein in venetoclax‑resistant U937 cells, in which the MCL‑1 protein is upregulated. In addition, chidamide was able to induce myeloid differentiation (with CD11b upregulation) of AML cell lines or monocytic/dendritic differentiation (with CD86 upregulation) of primary cultured cells from several patients with AML. Chidamide was also able to promote the differentiation of the venetoclax‑resistant U937 cell line by upregulating CD11b expression. In conclusion, chidamide alone or combined with 5‑AZA may be an effective therapy for AML.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。