Growth differentiation factor 11 improves neurobehavioral recovery and stimulates angiogenesis in rats subjected to cerebral ischemia/reperfusion

生长分化因子 11 改善脑缺血/再灌注大鼠的神经行为恢复并刺激血管生成

阅读:5
作者:Jingxi Ma, Lina Zhang, Tengfei Niu, Chibo Ai, Gongwei Jia, Xinhao Jin, Lan Wen, Keming Zhang, Qinbin Zhang, Changqing Li

Abstract

The recent suggestion that growth differentiation factor 11 (GDF11) acts as a rejuvenation factor has remained controversial. However, in addition to its role in aging, the relationship between GDF11 and cerebral ischemia is still an important area that needs more investigation. Here we examined effects of GDF11 on angiogenesis and recovery of neurological function in a rat model of stroke. Exogenous recombinant GDF11 (rGDF11) at different doses were directly injected into the tail vein in rats subjected to cerebral ischemia/reperfusion (I/R). Neurobehavioral tests were performed, the proliferation of endothelial cells (ECs) and GDF11 downstream signal activin-like kinase 5 (ALK5) were assessed, and functional microvessels were measured. Results showed that rGDF11 at a dosage of 0.1 mg/kg/day could effectively activate cerebral angiogenesis in vivo. In addition, rGDF11 improved the modified neurological severity scores and the adhesive removal somatosensory test, promoted proliferation of ECs, induced ALK5 and increased vascular surface area and the number of vascular branch points in the peri-infarct cerebral cortex after cerebral I/R. These effects were suppressed by blocking ALK5. Our novel findings shed new light on the role of GDF11. Our results strongly suggest that GDF11 improves neurofunctional recovery from cerebral I/R injury and that this effect is mediated partly through its proangiogenic effect in the peri-infarct cerebral cortex, which is associated with ALK5. Thus, GDF11/ALK5 may represent new therapeutic targets for aiding recovery from stroke.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。