ASH2L Mediates Epidermal Differentiation and Hair Follicle Morphogenesis through H3K4me3 Modification

ASH2L 通过 H3K4me3 修饰介导表皮分化和毛囊形态发生

阅读:6
作者:Qirui Wang, Siyi Zeng, Yimin Liang, Renpeng Zhou, Danru Wang

Abstract

The processes of epidermal development in mammals are regulated by complex molecular mechanisms, such as histone modifications. Histone H3 lysine K4 methylation mediated by COMPASS (complex of proteins associated with Set1) methyltransferase is associated with gene activation, but its effect on epidermal lineage development remains unclear. Therefore, we constructed a mouse model of specific ASH2L (COMPASS methyltransferase core subunit) deletion in epidermal progenitor cells and investigated its effect on the development of mouse epidermal lineage. Furthermore, downstream target genes regulated by H3K4me3 were screened using RNA sequencing combined with Cleavage Under Targets and Tagmentation sequencing. Deletion of ASH2L in epidermal progenitor cells caused thinning of the suprabasal layer of the epidermis and delayed hair follicle morphogenesis in newborn mice. These phenotypes may be related to the reduced proliferative capacity of epidermal and hair follicle progenitor cells. ASH2L depletion may also lead to depletion of the epidermal stem cell pools in late mouse development. Finally, genes related to hair follicle development (Shh, Edar, and Fzd6), Notch signaling pathway (Notch2, Notch3, Hes5, and Nrarp), and ΔNp63 were identified as downstream target genes regulated by H3K4me3. Collectively, ASH2L-dependent H3K4me3 modification served as an upstream epigenetic regulator in epidermal differentiation and hair follicle morphogenesis in mice.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。