Flexible 3D Plasmonic Web Enables Remote Surface Enhanced Raman Spectroscopy

灵活的三维等离子体网可实现远程表面增强拉曼光谱

阅读:5
作者:Erika Rodríguez-Sevilla, Jonathan Ulises Álvarez-Martínez, Rigoberto Castro-Beltrán, Eden Morales-Narváez

Abstract

Nanoplasmonic materials concentrate light in specific regions of dramatic electromagnetic enhancement: hot spots. Such regions can be employed to perform single molecule detection via surface-enhanced Raman spectroscopy. However, this phenomenon is challenging since hot spots are expected to be highly intense/abundant and positioning of molecules within such hot spots is crucial to manage with ultrasensitive SERS. Herein, it is discovered that a 3D plasmonic web embedded within a biohybrid (3D-POWER) exhibits plasmonic transmission, spontaneously absorbs the analyte, and meets these so much needed criteria in ultrasensitive SERS. 3D-POWER is built with nanopaper and self-assembled layers of graphene oxide and gold nanorods. According to in silico experiments, 3D-POWER captures light in a small region and performs plasmonic field transmission in a surrounding volume, thereby activating a plasmonic web throughout the simulated volume. The study also provides experimental evidence supporting the plasmonic field transport ability of 3D power, which operates as a SERS signal carrier (even beyond the apparatus field of view), and the ultrasensitive behavior of this ecofriendly and flexible material facilitating yoctomolar limit of detection. Besides, 3D-POWER is proven useful in food and biofluids analysis. It is foreseen that 3D-POWER can be employed as a valuable platform in (bio)analytical applications.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。