Nano-enhanced Optical Gene Delivery to Retinal Degenerated Mice

纳米增强光学基因传递至视网膜退化小鼠

阅读:8
作者:Subrata Batabyal, Sivakumar Gajjeraman, Sulagna Bhattacharya, Weldon Wright, Samarendra Mohanty

Background

The efficient and targeted delivery of genes and other impermeable therapeutic molecules into retinal cells is of immense importance for the therapy of various visual disorders. Traditional

Conclusion

The successful delivery and expression of MCO in the targeted retina after in-vivo NOD in the mice models of retinal degeneration opens a new vista for re-photosensitizing retina with geographic atrophies, such as in dry age-related macular degeneration.

Discussion

With viral or other non-viral (e.g. electroporation, lipofection) methods, gene is delivered everywhere, causing uncontrolled expression over the whole retina. This will cause complications in the functioning of non-degenerated areas of the retina. In the NOD method, the contrast in temperature rise in laser-irradiated nanorod-attached cells at nano-hotspots is significant enough to allow site-specific delivery of large genes. The in-vitro and in-vivo results using NOD, clearly demonstrate in-vivo gene delivery and functional cellular expression in targeted retinal regions without compromising the structural integrity of the eye or causing immune response. Conclusion: The successful delivery and expression of MCO in the targeted retina after in-vivo NOD in the mice models of retinal degeneration opens a new vista for re-photosensitizing retina with geographic atrophies, such as in dry age-related macular degeneration.

Methods

We aim to develop a continuous wave near-infrared laser-based Nano-enhanced Optical Delivery (NOD) method for spatially controlled delivery of ambient-light-activatable Muti-Characteristic opsin-encoding genes into retina in-vivo and ex-vivo. In this method, the optical field enhancement by gold nanorods is utilized to transiently permeabilize cell membrane, enabling delivery of exogenous impermeable molecules to nanorod-binding cells in laser-irradiated regions.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。