Misregulation of Rad50 expression in melanoma cells

黑色素瘤细胞中 Rad50 表达失调

阅读:6
作者:Nathan L Avaritt #, Richard Owens #, Signe K Larson, Matthew Reynolds, Stephanie Byrum, Kim M Hiatt, Bruce R Smoller, Alan J Tackett, Wang L Cheung

Abstract

DNA double-strand breaks are increased in human melanoma tissue as detected by histone H2AX phosphorylation.(1-3) We investigated two of the downstream effectors of DNA double-strand breaks, Rad50 and 53BP1 (tumor suppressor p53 binding protein 1), to determine if they are altered in human primary melanoma cells. Melanoma cases showed high Rad50 staining (81.8%; 9/11) significantly more frequently than conventional or atypical melanocytic nevi (0%; 0/18). In contrast, the staining pattern for 53BP1 appears similar between melanoma and nevi. This is the first study that shows activation and misregulation of the DNA repair pathway in human melanoma cells. The staining features of Rad50, a component of an essential DNA double-strand break repair complex, are clearly increased in melanoma cells with regards to both staining intensity and the number of positive melanoma cells. Interestingly, among the melanoma cases with increased Rad50 staining, most demonstrated cytoplasmic rather than nuclear staining (88.9%, 8/9). Further studies are needed to determine the cause of this mislocalization and its affects, if any, on DNA double-strand break repair in melanoma.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。