Highly efficient and stable perovskite solar cells enabled by low-dimensional perovskitoids

低维钙钛矿材料实现的高效稳定钙钛矿太阳能电池

阅读:9
作者:Jinbo Chen, Yingguo Yang, Hua Dong, Jingrui Li, Xinyi Zhu, Jie Xu, Fang Pan, Fang Yuan, Jinfei Dai, Bo Jiao, Xun Hou, Alex K-Y Jen, Zhaoxin Wu

Abstract

Deep traps originated from the defects formed at the surfaces and grain boundaries of the perovskite absorbers during their lattice assembly are the main reasons that cause nonradiative recombination and material degradation, which notably affect efficiency and stability of perovskite solar cells (PSCs). Here, we demonstrate the substantially improved PSC performance by capping the photoactive layer with low-dimensional (LD) perovskitoids. The undercoordinated Pb ions and metallic Pb at the surfaces of the three-dimensional (3D) perovskite are effectively passivated via the Pb-I bonding from the favorably lattice-matched 3D/LD interface. The good stability and hydrophobicity of the LD (0D and 1D) perovskitoids allow excellent protection of the 3D active layer under severe environmental conditions. The PSC exhibits a power conversion efficiency of 24.18%, reproduced in an accredited independent photovoltaic testing laboratory. The unencapsulated device maintains 90% of its initial efficiency after 800 hours of continuous illumination under maximum power point operating conditions.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。