Phosphoproteomic profiling of influenza virus entry reveals infection-triggered filopodia induction counteracted by dynamic cortactin phosphorylation

流感病毒入侵的磷酸化蛋白质组学分析表明,感染引发的丝状伪足诱导被动态皮质蛋白磷酸化所抵消

阅读:6
作者:Annika Hunziker, Irina Glas, Marie O Pohl, Silke Stertz

Abstract

Binding of influenza virus to its receptor triggers signaling cascades that reprogram the cell for infection. To elucidate global virus-induced changes to the cellular signaling landscape, we conducted a quantitative phosphoproteomic screen with human and avian influenza viruses. Proteins with functions in cell adhesion and cytoskeletal remodeling are overrepresented among the hits, and the majority of factors undergoing phosphorylation changes have a significant impact on infection efficiency. We show that influenza virus induces the formation of filopodia through Cdc42 signaling, which results in enhanced virus endocytosis. The host cell counteracts this mechanism with cortactin, a regulator of actin polymerization that becomes phosphorylated in response to virus binding and translocates to the cell cortex, where it limits filopodia formation and virus uptake. Overall, our study reveals the signaling cascades induced by influenza virus receptor engagement and uncovers virus-induced filopodia formation that is counteracted by the host cell.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。